Comparison Das et al WSDM 2011 and Zhao et al AAAI 2007

From Cohen Courses
Revision as of 23:14, 5 November 2012 by Ysim (talk | contribs)
Jump to navigationJump to search

This is a comparison of two related papers in event detection and temporal information extraction.


The papers are

Comparative analysis of both papers

The authors presents a method for detecting events from social text stream by exploiting more than just the textual content, but also exploring the temporal and social dimensions of their data. Social text streams are represented as multigraphs where each node denote an "actor" and an edge represents the information flow between two actors. First, the authors did content based clustering using a vector space model (tf-idf weights, cosine similarity, the works) and graph cut based clustering algorithm. This clustering segments their data into topics.

For a given topic, they measure the "intensities" over time using a sliding time window and segment them into intervals using an adaptive time series model. With the temporal segmentation, each topic is represented as a sequence of social network graphs over time. The weight of edges between different actors in this graph denote their communication intensity, and one can measure the "information flow" between actors for a given topic over time.

With the above content, temporal and information flow data, they extract events by extracting text segments subject to constraints on these information. For instance, an event should be from the same time interval, be about the same topics and mainly between a certain sub group of social actors.


They used the Enron email corpus and Dailykos blogs [3]. 30 events are manually labeled as ground truth in the dataset by looking for correspondance with real world news.

Performance is measured using precision/recall/fscore of how well events are recovered with their model.


They found that taking temporal and social dimensions into account can increase their f-score significantly. Their approach of integrating these diverse features together in a step-wise manner was also found to perform better than just including features in a standard machine learning framework.

Related papers

There has been a lot of work on event detection.

Study plan

  • Article: Adaptive time series model [4]
  • Graph cut based clustering [5]